Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

نویسندگان

  • And U. Turken
  • Timothy J. Herron
  • Xiaojian Kang
  • Larry E. O'Connor
  • Donna J. Sorenson
  • Juliana V. Baldo
  • David L. Woods
چکیده

BACKGROUND Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. METHODS Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures. RESULTS The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. CONCLUSIONS MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes.

Although neuroimaging is essential for prompt and proper management of traumatic brain injury (TBI), there is a regrettable and acute lack of robust methods for the visualization and assessment of TBI pathophysiology, especially for of the purpose of improving clinical outcome metrics. Until now, the application of automatic segmentation algorithms to TBI in a clinical setting has remained an e...

متن کامل

Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury.

Generalized whole brain volume loss has been well documented in moderate-to-severe traumatic brain injury (TBI), as has diffuse cerebral atrophy based on magnetic resonance imaging (MRI) volumetric methods where white matter may be more selectively affected than gray matter. However, specific regional differences in gray matter thickness of the cortical mantle have not been previously examined....

متن کامل

Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study.

BACKGROUND Magnetic resonance imaging (MRI) studies have shown diffuse cerebral atrophy following traumatic brain injury. In the past, quantitative volumetric analysis of these changes was carried out by manually tracing specific regions of interest. In contrast, voxel based morphometry (VBM) is a fully automated technique that allows examination of the whole brain on a voxel by voxel basis. ...

متن کامل

Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain a...

متن کامل

Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009